237 research outputs found

    Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater

    Get PDF
    peer-reviewedTwo different in situ spectrophotometers are compared that were used in the field to determine nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites. One sensor was a double wavelength spectrophotometer (DWS) and the other a multiple wavelength spectrophotometer (MWS). The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs. Both sensors are sufficient to monitor highly time-resolved NO3-N concentrations in emergent groundwater. However, the chosen path length of the sensors had a significant influence on the sensitivity and the range of detectable NO3-N. The accuracy of the calculated NO3-N concentrations of the sensors can be affected if the content of additional substances such as turbidity, organic matter, nitrite or hydrogen carbonate significantly varies after the sensors have been calibrated to a particular water matrix. The MWS offers more possibilities for calibration and error detection but requires more expertise compared with the DWS.The authors would like to acknowledge the Teagasc Walsh Fellowship scheme for funding the study in Ireland, and the German federal Ministry of Education and Research (BMBF) for sponsoring the SMART-project (grant no. 02WM1079-1086, 02WM1211-1212) for the study in Jordan.Teagasc Walsh Fellowship Programm

    Mobilisation or dilution? Nitrate response of karst springs to high rainfall events

    Get PDF
    peer-reviewedNitrate (NO3−) contamination of groundwater associated with agronomic activity is of major concern in many countries. Where agriculture, thin free draining soils and karst aquifers coincide, groundwater is highly vulnerable to nitrate contamination. As residence times and denitrification potential in such systems are typically low, nitrate can discharge to surface waters unabated. However, such systems also react quickest to agricultural management changes that aim to improve water quality. In response to storm events, nitrate concentrations can alter significantly, i.e. rapidly decreasing or increasing concentrations. The current study examines the response of a specific karst spring situated on a grassland farm in South Ireland to rainfall events utilising high-resolution nitrate and discharge data together with on-farm borehole groundwater fluctuation data. Specifically, the objectives of the study are to formulate a scientific hypothesis of possible scenarios relating to nitrate responses during storm events, and to verify this hypothesis using additional case studies from the literature. This elucidates the controlling key factors that lead to mobilisation and/or dilution of nitrate concentrations during storm events. These were land use, hydrological condition and karstification, which in combination can lead to differential responses of mobilised and/or diluted nitrate concentrations. Furthermore, the results indicate that nitrate response in karst is strongly dependent on nutrient source, whether mobilisation and/or dilution occur and on the pathway taken. This will have consequences for the delivery of nitrate to a surface water receptor. The current study improves our understanding of nitrate responses in karst systems and therefore can guide environmental modellers, policy makers and drinking water managers with respect to the regulations of the European Union (EU) Water Framework Directive (WFD). In future, more research should focus on the high-resolution monitoring of karst aquifers to capture the high variability of hydrochemical processes, which occur at time intervals of hours to days.Teagasc Walsh Fellowship Programm

    G-actions with close orbit spaces

    Get PDF
    The classification of G-spaces by Palais is refined for the case where the orbit space satisfies certain mild topological hypotheses. It is shown that when a sequence of such orbit spaces is "close" to a limit orbit space, in some suitable sense, within a larger ambient orbit space, the G-spaces in the tail of the sequence are strongly equivalent to the limit G-space.Comment: 12 pages, 1 figure. The result as previously stated in v1 was incorrect; the hypotheses were insufficien

    Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Get PDF
    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ

    Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Get PDF
    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ

    Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate

    Get PDF
    Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior

    Category Theoretic Analysis of Hierarchical Protein Materials and Social Networks

    Get PDF
    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a “concept web” or “semantic network” except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.Presidential Early Career Award for Scientists and Engineers (N000141010562)United States. Army Research Office. Multidisciplinary University Research Initiative (W911NF0910541)United States. Office of Naval Research (grant N000141010841)Massachusetts Institute of Technology. Dept. of MathematicsStudienstiftung des deutschen VolkesClark BarwickJacob Luri

    New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament

    Get PDF
    The mutable collagenous tissue (MCT) of echinoderms has the ability to undergo rapid and reversible changes in passive mechanical properties that are initiated and modulated by the nervous system. Since the mechanism of MCT mutability is poorly understood, the aim of this work was to provide a detailed morphological analysis of a typical mutable collagenous structure in its different mechanical states. The model studied was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was characterized in different functional states mimicking MCT mutability. Transmission electron microscopy, histochemistry, cryo-scanning electron microscopy, focused ion beam/scanning electron microscopy, and field emission gun-environmental scanning electron microscopy were used to visualize CDLs at the micro- and nano-scales. This investigation has revealed previously unreported differences in both extracellular and cellular constituents, expanding the current knowledge of the relationship between the organization of the CDL and its mechanical state. Scanning electron microscopies in particular provided a three-dimensional overview of CDL architecture at the micro- and nano-scales, and clarified the micro-organization of the ECM components that are involved in mutability. Further evidence that the juxtaligamental cells are the effectors of these changes in mechanical properties was provided by a correlation between their cytology and the tensile state of the CDLs
    corecore